Mining Positive and Negative Fuzzy Association Rules
نویسندگان
چکیده
While traditional algorithms concern positive associations between binary or quantitative attributes of databases, this paper focuses on mining both positive and negative fuzzy association rules. We show how, by a deliberate choice of fuzzy logic connectives, significantly increased expressivity is available at little extra cost. In particular, rule quality measures for negative rules can be computed without additional scans of the database.
منابع مشابه
Developing a Course Recommender by Combining Clustering and Fuzzy Association Rules
Each semester, students go through the process of selecting appropriate courses. It is difficult to find information about each course and ultimately make decisions. The objective of this paper is to design a course recommender model which takes student characteristics into account to recommend appropriate courses. The model uses clustering to identify students with similar interests and skills...
متن کاملFuzzy Weighted Associative Classifier based on Positive and Negative Rules
Construction of effective and accurate classifier is one of the challenges facing by the researchers. Many experiments have shown that Associative Classifier is significantly more accurate than the traditional classifiers. To classify the quantitative data, Fuzzy Associative Classifier was introduced and is also proved as an effective prediction model. Mining of negative association rules have ...
متن کاملOptimizing Membership Functions using Learning Automata for Fuzzy Association Rule Mining
The Transactions in web data often consist of quantitative data, suggesting that fuzzy set theory can be used to represent such data. The time spent by users on each web page is one type of web data, was regarded as a trapezoidal membership function (TMF) and can be used to evaluate user browsing behavior. The quality of mining fuzzy association rules depends on membership functions and since t...
متن کاملElicitation of fuzzy association rules from positive and negative examples
The aim of this paper is to provide a crystal clear insight into the true semantics of the measures of support and confidence that are used to assess rule quality in fuzzy association rule mining. To achieve this, we rely on two important pillars: the identification of transactions in a database as positive or negative examples of a given association between attributes, and the correspondence b...
متن کاملData Mining for Evolving Fuzzy Association Rules for Predicting Monsoon Rainfall of India
We used a data mining algorithm to evolve fuzzy association rules between the atmospheric indices and the Summer Monsoon Rainfall of All-India and two homogenous regions (Peninsular and West central). El Nino and Southern Oscillation (ENSO) and Equatorial Indian Ocean Oscillation zonal wind index (EQWIN) indices are used as the causative variables. Rules extracted are showing a negative relatio...
متن کامل